Extensible Binary Format (XBF)

Version 1.0 beta

1 Summary

This document covers the details of the Extensible Binary Format (XBF) which is intended to support a wide range of binary file types. The XBF format is utilized within this document to develop a standard format for game files (the “Game XBF”), which is an extension of the commonly used ROM image files to include additional metadata about ROM images and any additional information necessary for an emulator to actually use the ROMs.

2 Overview

ROM image files contain raw dumps of the ROM chips from the original game. There is no information within the ROM image describing the name of the game from which the ROM was derived or the memory location at which the ROM was originally accessible. Many emulators that use ROM image files contain a database of known ROMs. They derive the extra information necessary to display and use the ROM image file from this internal database. In these emulators, there is little opportunity to develop “home-brew” games or to test newly dumped games since considerable expertise is required to add a new ROM to the emulator’s internal database.

This new file format attempts to overcome this problem by moving the metadata about each ROM out of the emulators and into the files.

XBF

The Extensible Binary Format (XBF) is a format used by both the game files and the save state files produced by and for the Bliss emulator. It is loosely based on the concepts inherent in the Binary Intechange File Format (BIFF) developed by Microsoft, but it is geared more toward serving the needs of the gaming community in general and the classic gaming community specifically.

XBF is a record-based format that includes at least a “magic number” designating the XBF file type, a header record, and a list of file-type-specific records. The first 8 bytes of an XBF file compose the 64-bit magic number which indicates the type of the XBF file. This magic number is basically a sanity check which validates that the file is of the expected file type.

2.1 Record Format

Immediately following the magic number is a list of records in the format described in the table below.

	Offset
	Size
	Description

	0
	4
	Record ID (unsigned 32-bit integer)

	4
	4
	Record Size (unsigned 32-bit integer)

	8
	Record Size
	Record Data

The record format above is designed to allow programs to immediately recognize records in which they are interested by examining the record ID, and immediately discard records in which they have no interest by using the record size to skip over the record data.

2.2 Basic SubStructures

The following are a list of basic substructures used in describing each of the record formats.

2.2.1 Array

An array is simply a list of other other structures. Quite simply, arrays include a number indicating the number of items in the array followed by the list of items.

	Offset
	Size
	Description

	0
	4
	Array Length

	4
	Array Length * Element Size
	List of Elements

2.2.2 Identifier (ID)

Identifiers are unique 4-byte integers that obey the following rules.

1. IDs must be unsigned 32-bit integers.

2. IDs must be random.

3. IDs may not consist of any recognizable pattern, such as 0xFAFAFAFA or 0x12345678. If you are using a random-number generator to create your IDs and it generates a number with a recognizable pattern, throw it away and generate a new number.

4. IDs must be unique to the greatest extent as it is possible for you to determine. NEVER intentionally use the same random number for two different IDs. If you are using truly random techniques to generate your IDs, the chances of your generating a number already in use are less than the chances that the earth will spiral into the sun sometime before Christmas. This condition is really more for the bozos out there who will attempt to intentionally reuse IDs.

2.2.3 Integer

Integers are stored in little-endian, high-byte order. Thus the first byte read is the highest byte and the last byte read is the lowest byte. Unless otherwise stated in the record format description, integers are assumed to be unsigned and 32-bits (four bytes) in length.

2.2.4 Integer Array

An array of integers is, well, an array of integers. The size and sign of the integers should be indicated by the record which actually contains the array.

	Offset
	Size
	Description

	0
	4
	Array Length

	4
	Array Length * Integer Size
	List of Integers

2.2.5 UTF-8 Character

Characters are stored as unicode in UTF-8 format for backward compatibility with ASCII.

2.2.6 UTF-8 Character Array (String)

A string of UTF-8 characters.

	Offset
	Size
	Description

	0
	4
	String Length

	4
	String Length
	List of UTF-8 Characters

